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The theory of differential forms and time-dependent vector fields on manifolds is ap-
plied to formulate response theory for non-Hamiltonian systems. This approach is manifestly
coordinate-free, and provides a transparent derivation of the response of a thermostatted sys-
tem to a time-dependent perturbation.
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1. Introduction

The application of geometric methods and concepts from the theory of differen-
tiable manifolds [1–5] to the description of classical Hamiltonian systems is now stan-
dard [1,6], and textbook treatments of classical mechanics based on the theory of sym-
plectic manifolds are available [7–9]. Following early work (see [10–17]), there has been
recent interest in the application of suitably generalized geometric methods to problems
in the classical statistical mechanics of non-Hamiltonian systems [18–21].

Non-Hamiltonian dynamics are relevant when we consider the statistical mechan-
ics of thermostatted systems [22–25]. Various thermostatting mechanisms have been
introduced to remove heat supplied by nonequilibrium mechanical and thermal pertur-
bations [22–24,26]. Phase space volume is no longer conserved, and for nonequilibrium
steady states the phase space probability distribution appears to collapse onto a fractal
set of lower dimensionality than in the equilibrium case [22,23,25,27].

In the present paper we apply the theory of differential forms and time-dependent
vector fields on manifolds to formulate response theory for classical non-Hamiltonian
systems [22,28–30]. The formalism we develop is worthwhile for several reasons. First,
once preliminary definitions and results are in place, the theory avoids many of the rather
cumbersome manipulations required in previous approaches [22,28–30]. Second, the
manifest coordinate-independence of the formulation removes any question [21] con-
cerning possible coordinate dependence of the results. Third, our approach to the com-
putation of the time-dependent expectation values of observables in non-Hamiltonian
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systems is based on the fundamental concept of the pull-back. This notion, as applied
to both ordinary functions and to differential (volume) forms, together with the more
familiar concept of the Lie derivative, serves to unify and simplify the treatment of the
transformation properties of phase functions (observables) and phase space distribution
functions (densities) in the usual formalism [22,28–30]. Finally, our approach enables us
to shed light on some recent controversies concerning the dynamics of non-Hamiltonian
systems [31–37]; these issues are addressed elsewhere [38].

In section 2 of the present paper we present a very brief summary of the key
concepts from the theory of differential forms that are necessary for our discussion of
non-Hamiltonian systems. In section 3, the transport equation and associated covari-
ant generalized Liouville equation for the phase space distribution function are derived.
Section 4 illustrates the general ideas in the context of a simple system described by
Nosé–Hoover dynamics [23,26]. In section 5 we consider evaluation of ensemble phase
space averages in both the Heisenberg and Schrödinger pictures [22]. Response the-
ory for a time-dependent perturbation of a non-Hamiltonian system [22] is developed in
section 6, while section 7 concludes.

2. Essential preliminaries

It is not possible in the present paper to provide a self-contained account of the
theory of vector fields and forms on manifolds; a number of excellent textbooks are
available [1–5]. The discussion here is intended to establish our notation and to introduce
some key concepts that are essential for later work. References are given to relevant
sections of the book by Abraham, Marsden and Ratiu [3], which provides more material
on time-dependent vector fields and forms than most other introductory texts.

2.1. Manifold and coordinates

The n-dimensional differentiable manifold of interest (phase space) will be de-
noted M. (Local) coordinates are x = (x1, . . . , xn). An example for n = 2N
is the phase space of a Hamiltonian system, with 2N canonical coordinates (p1, . . . , pN,

q1, . . . , qN). Such a manifold has a natural symplectic structure (2-form) preserved by
the Hamiltonian flow [6]. We do not assume the existence of such Hamiltonian structure
(although note that several apparently non-Hamiltonian thermostatted systems have un-
derlying Hamiltonian structure [24,39]). Neither do we assume the existence of a natural
metric on the manifoldM, so that phase space is not in general a Riemannian manifold
in any natural sense. (Study of the Riemannian geometry of configuration space has
yielded fundamental insights into the onset of global stochasticity in multidimensional
Hamiltonian systems [40,41].) In the treatment of homogeneously thermostatted sys-
tems, the set of coordinates x consists of the position and momentum coordinates of the
physical system augmented by a set of extra variables describing the thermostat [22–
24,26].
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2.2. Vectors and forms

The tangent vector v at x ∈M is an element of the tangent space TxM. In terms
of coordinate basis vectors ej , j = 1, . . . , n,

v = vjej = vj
∂

∂xj
, (1)

where we sum over the repeated index j . A vector field on M is defined by giving a
vector v(x) ∈ TxM at every point x ∈M. We assume that v depends smoothly on x.

The 1-form or co-vector α is an element of the cotangent space, α ∈ T ∗xM, and
can be written as a linear combination of basis 1-forms dxj ,

α = αj(x) dxj , (2)

where dxj (v) = vj , so that α(v) ≡ 〈α, v〉 = αjv
j .

A p-form is a multilinear, fully antisymmetric tensor of order p; it produces a
number (scalar) when acting on an ordered p-tuple of tangent vectors. The standard
volume n-form for coordinates x is the n-fold exterior (wedge) product

ω = dx1 ∧ dx2 ∧ · · · ∧ dxn. (3)

The number ω(v1, v2, . . . , vn) is then the volume of the parallelepiped spanned by the
n tangent vectors (v1, v2, . . . , vn) at x. Other volume forms ω may be defined by multi-
plying the standard volume form ω by a (smooth, nonzero) function σ (x),

ω ≡ σ (x)ω. (4)

2.3. Evolution operator

The vector field ξ defined at every point x ∈M defines the dynamical equations

dx

dt
= ξ . (5)

We shall consider the most general case where the dynamical vector field is time-
dependent, ξ = ξ t ≡ ξ(x, t). This case is appropriate to describe the equations of
motion for a system subjected to a time-dependent external perturbation. The associated
evolution operator or flow is φt,s , which maps the point x ∈ M at time s to the point
φt,sx ∈M at time t :

φt,s :x 	→ φt,sx. (6)

For fixed s, the {φt,s} are assumed to form a one-parameter family of diffeomorphisms
ofM onto itself

φt,s :M→M. (7)
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We have

φt,sφs,r = φt,r , (8a)

φt,sφs,t = φt,t = Identity. (8b)

For a general time-dependent vector field ξ t the action of the evolution operator φt,s
on x depends on both s and t , while for ξ a time-independent vector field, the evolution
operator depends only on the time difference t − s:

φt,s = φt+τ,s+τ ≡ φt−s . (9)

2.4. Induced action on vector fields

The induced action of the flow φt,s on a vector field v is the push-forward (tangent
map) φt,s∗ : v 	→ φt,s∗v, where

v = vi
∂

∂xi

∣∣∣∣
x

	→ φt,s∗v = vi
∂(φt,sx)

j

∂xi

∂

∂xj

∣∣∣∣
φt,sx

. (10)

The matrix

M(t, s;x)ji ≡
∂(φt,sx)

j

∂xi
(11)

is the dynamical stability matrix [42].

2.5. Induced action on functions and forms: the pull-back

The pull-back φ∗t,sB of the time-independent function B = B(x) under the map-
ping φt,s is

[φ∗t,sB](x) ≡ B
(
φt,s(x)

)
, (12)

while the pull-back of a time-dependent function ft (x) ≡ f (t, x) is defined similarly

[φ∗t,sft ](x) = ft(φt,sx). (13)

The pull-back is naturally defined as a function of the “initial” phase point x.
The pull-back φ∗t,sα of a p-form α is defined by

φ∗t,sα|x(v1, . . . , vp) = α|φt,sx(φt,s∗v1, . . . , φt,s∗vp). (14)

Note that the form φ∗t,sα acts on tangent vectors at the point x, information on the form
α and tangent vectors φt,s∗v at the evolved point φt,sx having been “pulled back” to the
initial point x.

The pull-back of the volume form ω (equation (3)), φ∗t,sω, is of particular signifi-
cance in the statistical mechanics of Hamiltonian and non-Hamiltonian systems. Evalu-
ation of φ∗t,sω using (3) and (14) shows that

φ∗t,sω ≡ Jω(φt,s)ω, (15)
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where Jω(φt,s)(x) = |∂φt,sx/∂x| is the determinant of the dynamical stability matrix,
that is, the Jacobian for the transformation (6). Obviously, Jω(φt,t ) = 1 for all t and x.
For Hamiltonian dynamics, the Jacobian is unity, and the volume form is invariant under
the flow [6], φ∗t,sω = ω; this is one statement of Liouville’s theorem for Hamiltonian
systems. For non-Hamiltonian systems, the value of the Jacobian determines the growth
or shrinkage of the comoving volume element along the dynamical trajectory from x at
time s to φt,sx at time t [34]. The pull-back of the n-form ω is [3, section 6.5.12]

φ∗t,sω ≡ Jω(φt,s) ω =
∣∣∣∣∂φt,sx∂x

∣∣∣∣σ (φt,sx)σ (x)
ω. (16)

For the case of a time-independent vector field ξ , the result (16) shows that, if a func-
tion σ (x) can be found such that

σ (φtx)

σ (x)
=
∣∣∣∣∂φtx∂x

∣∣∣∣−1

(17)

for all x and t , then the volume form ω is invariant under the flow φt [17,19].

2.6. Lie derivative

The Lie derivative Lξ t of a function B along the vector field ξ is defined by

Lξ t B =
d

dτ
φ∗τ,tB

∣∣∣∣
τ=t
. (18)

From the definition,

L(t) ≡ Lξ t = ξ j (t, x)
∂

∂xj
, (19)

so that the Lie derivative is a differential operator in the variables x. In fact,

L(t)B = 〈dB, ξ t 〉, (20)

the directional derivative of B along ξ t .
Standard results on the Lie derivative are [3, section 4.2.31]

d

dt
φ∗t,sB = φ∗t,s

[
L(t)B

]
(21a)

and [3, section 4.2.32]

d

dt
φ∗s,tB = −L(t)[φ∗s,tB]. (21b)

Note the important difference between the right and left positions of L(t) in (21a)
and (21b), respectively. For a time-dependent function ft we have [3, p. 284, equa-
tion (8)]

d

dt
φ∗t,sft = φ∗t,s

[
L(t)ft + ∂ft

∂t

]
. (22)
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The Lie derivative of a form α is defined similarly, either via

L(t)α = d

dτ
φ∗τ,tα

∣∣∣∣
τ=t
, (23)

or through Cartan’s formula

L(t)α = iξ t dα + diξ tα, (24)

where d is the exterior derivative [2,5] and iξ tα is the interior product (contraction) of
the form α with the vector ξ t [2,5]. Corresponding to (21) we have [3, section 5.4.4]

d

dt
φ∗t,sα = φ∗t,s

[
L(t)α

]
(25a)

and

d

dt
φ∗s,tα = −L(t)[φ∗s,tα], (25b)

while if αt is explicitly time dependent (for example, αt = α(t, x)j dxj ), then [3, sec-
tion 5.4.5]

d

dt
φ∗t,sαt = φ∗t,s

[
L(t)αt + ∂αt

∂t

]
. (26)

From the definitions above, the action of the Lie derivative on the n-form ω is

L(t)ω = divω(ξ t )ω, (27)

where this equation defines the ω-divergence divω(ξ t ) of the vector field ξ t [2,3]. The
ω-divergence is independent of the coordinate system in which it evaluated; in terms of
coordinates {xj }, it is

divω(ξ t ) =
∂

∂xj

(
ξ j (t, x)

)
, (28)

while in terms of coordinates x̃ = x̃(x) it is

divω(ξ t ) =
1

γ (̃x)

∂

∂x̃j

(
γ (̃x)̃ξ j (t, x̃)

)
, (29)

where the transformed vector field components are

ξ̃ j = ξ i
∂x̃j

∂xi
, (30)

and γ (̃x) is the Jacobian |∂x/∂x̃|. Note also that, in addition to being coordinate-
independent, the definition of the ω-divergence does not depend in any way on the exis-
tence of a metric onM.

The ω-divergence is defined similarly:

L(t)ω = divω(ξ t )ω (31)
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with

divω(ξ t ) =
1

σ (x)

∂

∂xj

(
σ (x)ξ j (t, x)

)
. (32)

If the form α is invariant under the flow, φ∗t,sα = α, then clearly L(t)α = 0. The
condition that the n-form ω = σ (x)ω be invariant under the flow can be written as

divω(σ ξ t ) = 0 (33a)

or

∂

∂xj

(
σ (x)ξ j (t, x)

) = 0. (33b)

It is important to note that the same symbol L(t) is used to denote the Lie derivative
acting on functions, forms and vectors (Lξ v = [ξ , v], the commutator of ξ and v), so
that the specific action of L depends on the nature of the operand.

2.7. Phase space compressibility

Using equations (15), (25a) and (27), we obtain the equation of motion for the
Jacobian Jω(φt,s):

d

dt
ln Jω(φt,s)(x)= divω

(
ξ t (φt,sx)

)
(34a)

= κt(φt,sx), (34b)

where we have defined the phase space compressibility κt

κt (x) ≡ divω
(
ξ t (x)

) = ∂

∂xj
ξ j (t, x). (35)

For incompressible flow, such as Hamiltonian flow expressed in terms of canonical co-
ordinates, the phase space compressibility κt = 0, so that the Jacobian is always unity.
In the general case, equation (34) can be formally solved to yield

Jω(φt,s)(x) = exp

[ ∫ t

s

dτ κτ (φτ,sx)

]
. (36)

3. Time-dependent forms and the transport (continuity) equation

Let us define a time-dependent n-form ρt ,

ρt ≡ f (t, x)ω ≡ ft ω, (37)

where f (t, x) is the phase space distribution function for an ensemble of representative
systems, so that the fraction of the ensemble contained in any n-dimensional phase space
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region (open set) V ⊆ M at time t is obtained by integrating the n-form ρt over the
region V [3]

Ft(V ) =
∫
V

ρt . (38)

The normalization condition is ∫
M
ρt = 1 (39)

for all t , where the integral extends over the whole phase spaceM. The form ρt and/or
function f (t, x) are of central interest in the statistical mechanics of both Hamiltonian
and non-Hamiltonian systems.

The essential physical requirement is conservation of ensemble members under
time evolution φt,s:

Fs(V ) = Ft(φt,sV ) (40a)

or ∫
V

ρs =
∫
φt,sV

ρt , (40b)

where region V at time s evolves into region φt,sV at time t . A basic property of the
pull-back φ∗t,sρt is however [3, section 7.1.2]∫

V

φ∗t,sρt =
∫
φt,sV

ρt , (41)

so that conservation of ensemble members is equivalent to the condition

φ∗t,sρt = ρs (42)

for the form ρt . Differentiation of both sides of (42) with respect to t and use of (26)
yields

d

dt
φ∗t,sρt = φ∗t,s

[
∂ρt

∂t
+ Lξ t ρt

]
= 0, (43)

which leads to the transport equation for the n-form ρt [3, section 7.1B]:

∂ρt

∂t
+ Lξ t ρt = 0. (44)

Written in terms of the distribution function f , (44) yields the generalized Liouville
equation

∂f

∂t
+ divω(f ξ t ) =

∂f

∂t
+ L(t)f + f κt = 0. (45)
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Equation (45) is the covariant form of the Liouville equation for non-Hamiltonian sys-
tems [14]. For Hamiltonian (incompressible) dynamics we have

∂f

∂t
+ divω(f ξ t ) =

∂f

∂t
+ L(t)f = 0. (46)

Equation (45) holds for both time-independent and time-dependent flows [14]. It
is written in a manifestly coordinate-invariant fashion, and so cannot depend in any
way on the particular coordinate system in which calculations are carried out [21]. The
standard volume form ω of equation (3) is, of course, associated in a natural way with
the particular set of coordinates x = (x1, . . . , xn). Moreover, as the notation makes
clear, the form of the generalized Liouville equation (45) does depend on the volume
form ω with respect to which the divergence of ξ t is evaluated. A different choice of
volume form, ω, will lead to a different decomposition of the form ρt , ρt = f̄tω. If ω is
time-independent, ∂tω = 0, f̄ will satisfy the Liouville equation

∂f̄

∂t
+ divω

(
f̄ ξ t

) = 0. (47)

Once again, the form of (47) is coordinate-invariant. If the n-form ω itself satisfies the
transport equation,

∂ω

∂t
+ L(t)ω = 0, (48)

then the associated distribution function satisfies the Liouville equation

∂f̄

∂t
+ L(t)f̄ = 0. (49)

This equation corresponds to incompressible propagation of f̄ along the flow generated
by ξ (see [3, section 8.2.1] and [21]).

If ξ is time-independent and the form ρ is stationary, so that ∂tρt = 0, ∂tf = 0,
the Liouville equation (45) becomes

divω(f ξ) = Lf + f κ = 0. (50)

Conversely, it is necessary to solve (50) for stationary f in order to obtain an invariant
measure ρ = f ω.

4. Example: Equilibrium Nosé–Hoover dynamics

To illustrate some of the concepts introduced above, we consider a system with a
single degree of freedom coupled to a thermostat described by Nosé–Hoover dynam-
ics [43,44]. The phase space is three-dimensional, where x = (q, p, ζ ), ξ = ẋ =
(q̇, ṗ, ζ̇ ), and the variable ζ is the coordinate associated with the thermostat. Equations
of motion are [43]

q̇ = p

m
, (51a)
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ṗ=F(q)− αζp, (51b)

ζ̇ =
[
p2

m
− kT

]
, (51c)

where F(q) = −∂%(q)/∂q, %(q) is the system potential energy, α is a coupling para-
meter, k is Boltzmann’s constant and T the temperature of the thermostat. If the Nosé–
Hoover dynamics (51a) is ergodic (as it is unlikely to be for only a single degree of
freedom [43–45]), then the associated invariant density in phase space corresponds to a
canonical distribution for the (q, p) variables at temperature T .

The action of the time-independent Lie derivative associated with (51a) on a func-
tion B(q, p, ζ ) is

LB =
[
q̇
∂

∂q
+ ṗ ∂

∂q
+ ζ̇ ∂

∂ζ

]
B (52a)

=
[
p

m

∂

∂q
+ (F(q)− αζp) ∂

∂p
+
(
p2

m
− kT

)
∂

∂ζ

]
B. (52b)

The phase space compressibility is

κ(q, p, ζ ) = ∂q̇

∂q
+ ∂ṗ

∂p
+ ∂ζ̇

∂ζ
= −αζ. (53)

Define the (unnormalized) distribution function

f (0) = exp

[
− 1

kT

{
p2

2m
+%(q)+ αζ 2

2

}]
(54)

and associated 3-form

ρ(0) = f (0)ω = f (0) dq ∧ dp ∧ dζ. (55)

Direct calculation shows that

Lf (0) = +αζf (0), (56)

so that

Lρ(0)=L(f (0)ω
)

= (Lf (0)
)
ω + f (0)(Lω)

= (+αζf (0))ω + f (0)(κ(q, p, ζ )ω)
= (αζ − αζ)ρ(0)
= 0. (57)

That is, the 3-form ρ(0) is invariant under the flow, and the associated invariant distribu-
tion function is f (0) [43]. As stated above, this is a canonical distribution in the (q, p)
variables.
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5. Average values in Heisenberg and Schrödinger picture

The ensemble average of the time-independent phase function B(x) at time t is
given in the Heisenberg picture [22,28,29,46] by

〈B〉(t) =
∫
M
(φ∗t,0B)ρ0. (58)

That is, the ensemble average is obtained by evaluating the function B at the time evolved
phase points φt,0x, with initial conditions weighted by the initial distribution function
ρ0 = f (0, x)ω at t = 0. We have

〈B〉(t)=
∫
M
(φ∗t,0B)ρ0 (59a)

=
∫
M
(φ∗t,0B)(φ

∗
t,0ρt) (59b)

=
∫
M
φ∗t,0(Bρt) (59c)

=
∫
φt,0M

Bρt (59d)

=
∫
M
Bρt, (59e)

where we use the fact that φt,0M = M. Equation (59e) is the expression for 〈B〉t in
the Schrödinger picture, where we evaluate the average of B using the time evolved
distribution ρt = f (t, x)ω, so that

〈B〉(t) =
∫
M
(φ∗t,0B)ρ0 =

∫
M
Bρt. (60)

If the form ρ is invariant,

φ∗t,0ρt = ρ0 = ρt ≡ ρ, (61)

then

〈B〉(t) =
∫
M
(φ∗t,0B)ρ0 =

∫
M
Bρt =

∫
M
Bρ = 〈B〉(0), (62)

so that all observables are stationary.
Note that the results (60) are manifestly coordinate independent; they do not de-

pend in any way upon the particular set of coordinates used to compute f or ω. More-
over, the computed averages are also invariant with respect to the particular decomposi-
tion of the time-dependent form ρt :

ρt = ftω = f̄tω. (63)
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Differentiation of the Heisenberg expression with respect to t yields

d

dt

∫
M
(φ∗t,0B)ρ0=

∫
M

[
d

dt
(φ∗t,0B)

]
ρ0 (64a)

=
∫
M

(
φ∗t,0

(
L(t)B

))
ρ0 (64b)

=
∫
M

(
φ∗t,0

(
L(t)B

))
(φ∗t,0ρt) (64c)

=
∫
M
φ∗t,0

((
L(t)B

)
ρt
)

(64d)

=
∫
φt,0M

(
L(t)B

)
ρt (64e)

=
∫
M

(
L(t)B

)
ρt, (64f)

while differentiation of the Schrödinger picture expression yields

d

dt

∫
M
Bρt =

∫
M
B
∂

∂t
ρt (65a)

=−
∫
M
B
(
L(t)ρt

)
. (65b)

We therefore have ∫
M

(
L(t)B

)
ρt = −

∫
M
B
(
L(t)ρt

)
. (66)

This relation is in fact true for the Lie derivative associated with any vector field v, as
follows from application of Stokes theorem [2,3,5]∫

∂V

Bivρ =
∫
V

d(Bivρ) (67a)

=
∫
V

[
dB ∧ ivρ + Bd(ivρ)

]
(67b)

=
∫
V

[〈dB, v〉ρ + B(divρv)ρ
]

(67c)

=
∫
V

[
(LvB)ρ + B(Lvρ)

]
(67d)

= 0, (67e)

where we assume that the flux form ivρ vanishes on the boundary ∂V of region V .
The key task of response theory is then computation of the pull-back φ∗t,sB and the

time evolved n-form ρt .
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5.1. Calculation of ρt

5.1.1. Direct solution
In order to calculate the average value 〈B〉t in the Schrödinger picture, it is neces-

sary to compute the time evolved n-form ρt = f (t, x)ω or distribution function f (t, x)
in terms of f (s, x), the probability density at the earlier time s. The key relation, which
follows from (8b) and the condition (42), is

ρt = φ∗s,tρs, (68)

so that

ρt = φ∗s,t (fsω) (69a)

= (φ∗s,tfs)(φ∗s,tω) (69b)

= (φ∗s,tfs)Jω(φs,t )ω, (69c)

where we have used the definition of the Jacobian Jω. From (36) the Jacobian is

Jω(φs,t )(x)= exp

[ ∫ s

t

dτ κτ (φτ,tx)

]

= exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
(70)

so that we have the following relation between the distribution functions ft and fs

f (t, x) = f (s, φs,tx) exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
. (71)

To verify directly that (71) is a solution of the Liouville equation (45), differentiate with
respect to t , noting

∂

∂t
f (s, φs,tx)= ∂

∂t
φ∗s,tf (s, x) (72a)

=−L(t)(φ∗s,tf (s, x)) (72b)

=−L(t) f (s, φs,tx) (72c)

and

∂

∂t
exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
(73a)

=
{
∂

∂t

[
−
∫ t

s

dτ κτ (φτ,tx)

]}
exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
(73b)

= −{κt(x)+ L(t)} exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
(73c)
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so that

∂

∂t
f (t, x)=−{κt(x)+ L(t)}f (s, φs,tx) exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
(74a)

=−{κt(x)+ L(t)}f (t, x) (74b)

=−divω(f ξ t ), (74c)

which is the generalized Liouville equation (45).
For incompressible dynamics (κ = 0), (71) shows that

f (t, x) = f (s, φs,tx). (75)

That is, the value of the distribution function at phase point x at time t is equal to the
value of f at time s evaluated at the phase point φs,tx; this phase point is mapped to
x by the evolution operator φt,s . The phase space distribution function is therefore
a time-dependent constant of the motion [47]. For compressible systems, (45) shows
that there is an additional factor involving the time history of the compressibility κτ
along the trajectory from φs,tx to x. If the comoving volume element shrinks uni-
formly along the trajectory, then the value of the phase space distribution function must
undergo a compensating increase in value to ensure conservation of ensemble mem-
bers [34].

5.1.2. Series expansion for ρt
To generate a formal series expansion for the n-form ρt , note that

ρt = ρs +
∫ t

s

dτ
d

dτ
ρτ (76a)

= ρs −
∫ t

s

dτ L(τ )ρτ . (76b)

By iterative substitution, we obtain in standard fashion

ρt = φ∗s,tρs, (77)

with

φ∗s,t = 1+
∑

n=1,2,...

(−)n
∫ t

s

dτ1

∫ τ1

s

dτ2 · · ·
∫ τn−1

s

dτn L(τ1)L(τ2) · · ·L(τn). (78)

This result expresses the pull-back φ∗s,t as an operator with left-hand-side time-ordering
τ1 � τ2 � · · · � τn (cf. [22,28]). If the vector field ξ is time-independent, then the
time-ordered operator becomes the usual exponential and the pull-back becomes

φ∗s,t = e−(t−s)L. (79)
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5.1.3. Morriss’ lemma
The relation (71) can be written as

ρt = f (t, x)ω (80a)

= φ∗s,tρs (80b)

= [φ∗s,tf (s, x)][φ∗s,tω] (80c)

= [φ∗s,tf (s, x)] exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
ω (80d)

≡ [%f
t,sf (s, x)

]
ω, (80e)

where it is crucial to note that by definition the operator

%
f
t,s = exp

[
−
∫ t

s

dτ κτ (φτ,tx)

]
φ∗s,t , (81)

acts upon the phase space distribution function f (s, ·) only, whereas the pull-back φ∗s,t
acts upon the form ρs . The operator %f

t,s incorporates a prefactor reflecting the time
history of the change in the standard volume form ω from time s to time t along the
trajectory φτ,t [48]. Equation (81) is Morriss’ lemma [22].

For the case of time-independent vector fields ξ , the time evolution operator φt,s
depends only on the time difference t − s:

φt,s = φt−s,0 ≡ φt−s . (82)

Moreover, the compressibility κ has no explicit time dependence, κτ = κ . Equation (81)
then becomes (setting s = 0)

%
f

t,0 ≡ %
f
t = exp

[
−
∫ t

0
dτ κ(φτ−tx)

]
φ∗−t . (83)

Changing the integration variable to s ≡ t − τ yields

%
f

t,0 ≡ %
f
t = exp

[
−
∫ t

0
ds κ(φ−sx)

]
φ∗−t . (84)

That is,

f (t, x) = %
f
t f (0, x) = exp

[
−
∫ t

0
ds κ(x−s)

]
f (0, x−t ), (85)

where x−t ≡ φ−tx [22,48].
In the derivations to follow we shall not use the operator %f

t,s , but rather we con-
tinue to use standard pull-backs φ∗t,s and φ∗s,t .
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5.2. Calculation of φ∗t,sB

The pull-back φ∗t,sB satisfies the equation

d

dt
φ∗t,sB = φ∗t,s[Lξ t B] ≡ φ∗t,s

[
L(t)B

]
, (86)

so that

φ∗t,sB =B +
∫ t

s

dτ
d

dτ
φ∗τ,sB

=B +
∫ t

s

dτ φ∗τ,s
[
L(τ )B

]
. (87)

We now must evaluate the pull-back φ∗τ,s[L(τ )B]. If we consider the function L(τ )B to
have fixed argument τ , then noting

d

dτ
φ∗τ,s

[
L(λ)B

]∣∣
λ=τ = φ∗τ,s

[
L(τ )

(
L(λ)B

)]∣∣
λ=τ (88)

we have

φ∗τ,s
[
L(τ )B

] = L(τ )B + ∫ τ

s

dτ ′ φ∗τ ′,s
[
L(τ ′)

(
L(τ )B

)]
, (89)

so that, by iterative substitution into (87)

φ∗t,sB =
[

1+
∑

n=1,2,...

∫ t

s

dτ1

∫ τ1

s

dτ2 · · ·
∫ τn−1

s

dτn L(τn)L(τ2)L(τ1)

]
B. (90)

This result expresses the pull-back φ∗t,s as an operator with right-hand-side time-ordering
τn � τn−1 � · · · � τ1 (cf. [22,28]). For time-independent ξ , the pull-back φ∗t,s is the
exponential operator

φ∗t,s = e(t−s)L. (91)

5.3. Dyson equations for the pull-back

Consider two time-dependent vector fields ξ̄(t, x) and ξ(t, x)with associated flows
φt,s , φt,s , and Lie derivatives L(t) ≡ Lξ̄ t , L(t) ≡ Lξ t . For example, ξ t could be the

unperturbed time evolution, with ξ̄ t the perturbed system dynamics.
There are two relevant Dyson equations, which we write as general relations be-

tween pull-backs φ∗ and φ ∗:

φ ∗t,s = φ∗t,s +
∫ t

s

dτ φ∗τ,s
(
L(τ )− L(τ ))φ ∗t,τ , (92a)

φ ∗t,s = φ∗t,s +
∫ t

s

dτ φ ∗τ,s
(
L(τ )− L(τ ))φ∗t,τ . (92b)
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To prove (92a), for example, differentiate both sides of the equation with respect
to t :

d

dt
φ ∗t,s = φ ∗t,sL(t), (93a)

and

d

dt

[
φ∗t,s +

∫ t

s

dτ φ∗τ,s
(
L(τ )− L(τ ))φ ∗t,τ

]

= φ∗t,sL(t)+ φ∗t,s
(
L(t)− L(t))+ ∫ t

s

dτ φ∗τ,s
(
L(τ )− L(τ ))φ ∗t,τL(t)

=
[
φ∗t,s +

∫ t

s

dτ φ∗τ,s
(
L(τ )− L(τ ))φ ∗t,τ

]
L(t).

(93b)

The two sides of equation (92a) are equal for t = s, and satisfy the same first-order dif-
ferential equation in t ; they are, therefore, identical. Equation (92b) is proved similarly.

Two additional Dyson equations can be obtained by exchanging s ↔ t .

6. Response theory

Let f (0) be the equilibrium phase space distribution function for time-independent
unperturbed dynamics with Lie derivative Lξ . The associated invariant volume form is
ρ(0) = f (0)ω, with

Lξ ρ(0) = 0. (94)

Perturbed dynamics are generated by the vector field ξ̄(t), with associated Lie derivative
L(t). Define 'ξ(t) ≡ ξ̄(t)− ξ and 'L(t) ≡ L(t)− L, so that

'L(t) = L'ξ(t). (95)

To illustrate the general theory, we take the unperturbed flow ξ to correspond to
the equilibrium Nosé–Hoover system (51), while the flow ξ̄(t) is associated with the
perturbed system [46]

q̇ = p

m
, (96a)

ṗ=F(q)− αζp +X(t), (96b)

ζ̇ =
[
p2

m
− kT

]
, (96c)

so that 'ξ = (0, X(t), 0).
We wish to calculate the average

〈B〉(t) =
∫
M

(
φ ∗t,0B

)
ρ(0), (97)
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where the phase space distribution at t = 0 is the equilibrium form ρ(0). Following
chapter 8 of [22], we use the Dyson equation (92a) to obtain

〈B〉(t)=
∫
M
(φ∗t,0B)ρ

(0) +
∫ t

0
dτ
∫
M

{
φ∗τ,0

[(
L(τ )− L)φ ∗t,τB]}ρ(0)

=
∫
M
(φ∗t,0B)ρ

(0) +
∫ t

0
dτ
∫
M

{
φ∗τ,0

[
'Lφ ∗t,τB

]}
ρ(0). (98)

The first term is just 〈B〉(0) = 〈B〉0, the equilibrium average, so that

〈B〉(t)− 〈B〉0 =
∫ t

0
dτ
∫
M

{
φ∗τ,0

[
'L(τ )φ ∗t,τB

]}
ρ(0) (99a)

=
∫ t

0
dτ
∫
M

[
'L(τ )φ∗t,τB

]
ρ(0) (99b)

=−
∫ t

0
dτ
∫
M

[
φ ∗t,τB

][
'L(τ )ρ(0)

]
, (99c)

where we have used φ∗t,0ρ
(0) = ρ(0) and equation (66).

The action of 'L(τ ) on ρ(0) is

'L(τ )ρ(0) = ('L(τ )f (0)
)
ω + f (0)

(
'L(τ )ω

)
. (100)

If the AI) (adiabatic incompressibility of phase space) assumption [22] holds, then

'L(τ )ω = divω
(
'ξ(τ )

)
ω = 0. (101)

That is, the ω-divergence of 'ξ vanishes, as is the case, for example, if the time-
dependent perturbation derives from a Hamiltonian. We therefore have

'L(τ )ρ(0) = ('L(τ )f (0))ω. (102)

For the case of the perturbed Nosé–Hoover system discussed above,

'L(τ )f (0) = +X(t) ∂
∂p
f (0) = −βX(t)

(
p

m

)
f (0), (103)

where we have used the form (54) for f (0), and β = 1/kT . For more general perturba-
tions, but still assuming AI), we write

'L(τ )ρ(0) ≡ +βX(τ)J (x)ρ(0), (104)

where J (x) is the dissipative flux [22]. We therefore have

〈B〉(t) − 〈B〉0 = −β
∫ t

0
dτ X(τ)

∫
M

[
φ ∗t,τB

]
J (x)ρ(0). (105)
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Using the relations

φt,τ = φt,0φ0,τ , (106a)

φ ∗t,τ = φ ∗0,τφ ∗t,0, (106b)

1= φ ∗0,τφ ∗τ,0 (106c)

and [
φ ∗t,τB

]
(x) = [φ ∗0,τ[φ ∗t,0B]](x), (107)

we find

〈B〉(t) − 〈B〉0 = −β
∫ t

0
dτ X(τ)

∫
M

[
φ ∗t,0B

]
φ ∗τ,0

(
Jρ(0)

)
. (108)

It is now necessary to determine the form φ ∗τ,0(Jρ
(0)):

φ ∗τ,0
(
Jρ(0)

) = [φ ∗τ,0J ][φ ∗τ,0ρ(0)]. (109)

The form φ ∗τ,0ρ
(0) satisfies the differential equation

d

dτ
φ ∗τ,0ρ

(0)= φ ∗τ,0
[
L(τ )ρ(0)

]
= φ ∗τ,0

[
'L(τ )ρ(0)

]
= φ ∗τ,0

[(
βX(τ)J

)
ρ(0)

]
= βX(τ)[ φ ∗τ,0J ][φ ∗τ,0ρ(0)] (110)

with φ ∗τ,0ρ
(0)|τ=0 = ρ(0). The solution to this equation is

φ ∗τ,0ρ
(0) = exp

[
β

∫ τ

0
ds X(s)J

(
φs,0x

)]
ρ(0), (111)

so the final result is the so-called Kawasaki form for 〈B〉(t) [22]

〈B〉(t) − 〈B〉0
= −β

∫ t

0
dτ X(τ)

∫
M

[
φ ∗t,0B

][
φ ∗τ,0J

]
exp

[
β

∫ τ

0
ds X(s)J

(
φs,0x

)]
ρ(0)

≡ −β
∫ t

0
dτ X(τ)

〈[
φ ∗t,0B

][
φ ∗τ,0J

]
exp

[
β

∫ τ

0
ds X(s)J

(
φs,0x

)]〉
0

. (112)

The usual linear response theory result is easily obtained from (112) by setting

exp

[
β

∫ τ

0
ds X(s)J

(
φs,0x

)] � 1, (113)
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so that

〈B〉(t) − 〈B〉0 �−β
∫ t

0
dτ X(τ)

〈[
φ ∗t,0B

][
φ ∗τ,0J

]〉
0

=−β
∫ t

0
dτ X(τ)

〈
B
(
φt,0x

)
J
(
φτ,0x

)〉
0

≡−β
∫ t

0
dτ X(τ)

〈
B(t)J (τ)

〉
0. (114)

7. Summary and conclusion

In this paper we have formulated response theory for non-Hamiltonian systems
using concepts and results from the theory of differential forms and time-dependent
vector fields on manifolds. Systematic use of the notion of the pull-back enables us
to provide a unified and transparent derivation of the response for the general case of
time-dependent perturbation of a non-Hamiltonian system.

Our approach is manifestly coordinate-free, so that there can be no question of
any coordinate system dependence of the results obtained. In particular, this is true for
the generalized Liouville equation satisfied by the phase space distribution function f

associated with the form ρt , ρt = ftω.
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